Essai

Essai

Category : Non classé

Slide 1

To insert a mathematical formula we use the dollar symbol

$, as follows:

Euler’s identity: $ e^{i \pi} + 1 = 0 $

To isolate and center the formulas and enter in math display mode, we use 2 dollars symbol:

$$ … $$

Euler’s identity: $$ e^{i \pi} + 1 = 0 $$

Slide 2

$$ \frac{arg 1}{arg 2} \\ x^2\\ e^{i\pi}\\ A_i\\ B_{ij}\\ \sqrt[n]{arg} $$

Given : $\pi = 3.14$ , $\alpha = \frac{3\pi}{4}\, rad$ $$ \omega = 2\pi f \ f = \frac{c}{\lambda}\ \lambda_0=\theta^2+\delta\ \Delta\lambda = \frac{1}{\lambda^2}

$$ — $$

\sin(-\alpha)=-\sin(\alpha)\ \arccos(x)=\arcsin(u)\ \log_n(n)=1\ \tan(x) = \frac{\sin(x)}{\cos(x)}

$$

In [ ]:
 

Slide 1

To insert a mathematical formula we use the dollar symbol

$, as follows:

Euler’s identity: $ e^{i pi} + 1 = 0 $

To isolate and center the formulas and enter in math display mode, we use 2 dollars symbol:

$$

$$

Euler’s identity: $$ e^{i pi} + 1 = 0 $$

Slide 2

$$
frac{arg 1}{arg 2}
x^2
e^{ipi}
A_i
B_{ij}
sqrt[n]{arg}
$$


Given : $pi = 3.14$ , $alpha = frac{3pi}{4}, rad$
$$
omega = 2pi f
f = frac{c}{lambda}
lambda_0=theta^2+delta
Deltalambda = frac{1}{lambda^2}

$$

$$

sin(-alpha)=-sin(alpha)
arccos(x)=arcsin(u)
log_n(n)=1
tan(x) = frac{sin(x)}{cos(x)}

$$

In [ ]:
 


Archives